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Probability Distribution of the Sum, Difference, Produet and the Quotient 
of Normalized Bijvoet Differences from a Pair of Non-Centrosymmetrie Crystals* 
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Centre of  Advanced Study in Physics, University of  Madras, Madras-25, India 

(Received 14 August 1966 and in revised form 17 July 1967) 

The statistical distributions of the sum, difference, product and the quotient of the normalized Bijvoet 
differences from a pair of crystals are worked out for two cases, namely when the pair of crystals is 
isomorphous and when they are non-isomorphous. The distribution of these variables depends on the 
number of anomalous scatterers in the unit cell and four cases are considered, namely when the number 
is small (1 or 2) or large and in the latter case with either a centrosymmetric or non-centrosymmetric 
configuration. The moments of these variables in the various cases are also obtained. The theoretical 
distributions of these variables are given in the form of curves. The use of the results for testing the 
isomorphism of a pair of non-centrosymmetric crystals with anomalous scatterers is also discussed. 
The theoretical distributions have also been verified using suitable two-dimensional models. The results 
show that the difference and the quotient variables are likely to be useful for testing isomorphism in 
practice. 

1. Introduction 

The anomalous dispersion effect has the possibility of 
wide applications in X-ray crystal structure analysis; 
for example, for the determination of (1) the space 
group (Ramachandran & Parthasarathy, 1963); (2) the 
absolute configuration (Bijvoet, Peerdeman & van 
Bommel, 1951); and (3) the crystal structure (Rama- 
chandran & Raman, 1956; Peerdeman & Bijvoet, 1956; 
Okaya & Pepinsky, 1961). In this paper we shall can- 
sider one more possible use of the anomalous disper- 
sion effect, namely, in testing for isomorphism of a 
pair of non-centrosymmetric crystals using the values 
of the Bijvoet differences IAII measured from them. 

The method adopted in this paper is based on a very 
simple principle, namely, that intensities of X-ray re- 
flexions are structure sensitive quantities and hence the 
intensity data from a pair of crystals must contain in- 
formation about the isomorphism of the pair of crys- 
tals. Though a few tests for isomorphism from a pair 
of crystals are available (Bernal, Carlisle & Rosemeyer, 
1959; Carlisle & Palmer, 1962; Ramachandran & 
Parthasarathy, 1963; Srinivasan, Sarma & Ramachan- 
dran, 1963; Srinivasan, Subramanian & Ramachan- 
dran, 1964; Srinivasan & Ramachandran, 1965; Par- 
thasarathy & Ramachandran, 1966) yet they involve 
the use of intensity data under normal dispersion. The 
test proposed in this paper particularly suits a pair of 
non-centrosymmetric crystals when there is anomalous 
scattering of X-rays. Such a test is interesting, particu- 
larly because of the fact that a unique determination 
of the phase in a non-centrosymmetric crystal is pos- 
sible by combining the isomorphous and anomalous 
dispersion data (see Ramachandran & Raman, 1956; 
North, 1965). 

* Contribution No. 227 from the Centre of Advanced 
Study in Physics, University of Madras, Madras-25, India. 

In this paper we shall closely follow the notation 
used in earlier papers from this department (see Par- 
thasarathy & Srinivasan, 1964; Parthasarathy & Ra- 
machandran, 1966; and these two papers will be here- 
after denoted PS and PR respectively). It may be noted 
here that the isomorphism dealt with in this paper is 
of the substitutional type, i.e. one group of anomalous 
scatterers is replaced by another group (see equations 
(1) and (2) of PR). It is assumed that the anomalous 
scatterers in each crystal are of the same type and that 
the normal scatterers in the two crystals are all of 
nearly the same scattering power. (The designations 
for the various cases determined by the number of 
P-atoms in the unit cell are the same as those given 
in PR.) 

2. Derivation of the density functions and expectation 
values of xs, xa, x~, and Xq 

2.1 Principle of  the method 
Consider a pair of non-centrosymmetric crystals 

(designated by superscripts 1 and 2) each of which 
contains P anomalous scatterers and Q normal scat- 
terers in the unit cell of each crystal (N=P+Q).  Let 
f(pl) and f(p2) be the atomic scattering factors of the 
anomalous scatterers in the two crystals andfe  be that 
for the norlnal scatterers in either crystal. Let #1) and 
x(2) be the normalized Bijvoet difference (see PS for 
definition of x) of a reflexion H in the two crystals. 
We have from PS that 

x(i) - ,,(Oy(O] sin -~p  o ~,(0[, i=  1,2 (1) 
where 

yp=lF;l/a; ,  yQ=IFQI/aQ, (2) 
~(i) =~g)_~;(,). 

We shall define the sum, difference, product and the 
quotient of the normalized Bijvoet differences from 
the two crystals by 
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xs = xO) + x(z) (3a) 
X d = X  (1) - - X  (2) (3b) 
xp = x (1) . x (z) (3c) 
Xq =x(nlx(2) . (3d) 

The probability density functions (abbreviated as 
PDF) of these variables will depend on whether the 
crystal pair is isomorphous (denoted by I) or non- 
isomorphous (NI) (see PR). Thus the probability dis- 
tributions of these variables and their expectation 
values would be useful in testing for the isomorphism 
of the pair. We shall now work out the density func- 
tions of xs, xa, xp and Xq. 

2.2 Density functions of  xs, xa, xp and xq 

(a) Isomorphous pair 
From equations (4a) and (10) of PR it is clear that 

for an I pair 
y~n=y~2)=yp, say (4a) 

Y~) -,~o- " (2) _--yQ, say (4b) 
~//(1) = ~//(2) = I//, s a y  (4e) 

so that 
X (1) = X  (2) =yPYolsin vl  = I " ,  s a y .  (5) 

From (3) and (5) we obtain 

xs = 2X, xa = 0, xu = X 2, xa = 1 . (6) 

The PDF of X will be the same as that for the nor- 
malized Bijvoet difference x (see PS). Denoting this by 
Px(X) we have 

P (X) = 

(2/]/7:) exp ( - X  1 for P = l  
(l/2/7:3/2) exp (-XZ/4)Ko(X2/4) for P = 2  (7) 
(23/2/7:)Ko(I/2X) for P= M C  
2 exp ( -  2X) for P = M A .  

From (6) and (7), the PDF's of Xs, xa, x~ and Xq can 
be easily obtained by the usual method. We therefore 
have 

P(x ) = 

[ (1/]/z 0 exp ( -  x2/4) for P =  1 
(2~z3)-1/z exp (-x2~/16)Ko(x~/16) for P = 2  (8) 
(]/2/7:)Ko(xs/V2) for P =  M C  
exp ( - x s )  for P =  MA 

P(xa)=O(xa) for all P ,  (9) 

where O(x) is the Dirac delta function. 

P(x~)= 

(gx~)-l/2 exp ( - x ~ )  for P = 1 
(27:3x2~)-1/Zexp(-x2o/4)Ko(x~/4) for P - -2  (10) 
(l/2/z~l/x~o) K o ( ] / ~ )  for P= M C  
x ;  m exp ( -2 l /x~)  for P =  MA 

P(xq)=J(xq-1 )  for all P .  (11) 

(b) Non-isomorphous pair 
In this case x(a) and x (2) will be independent random 

variables (see PR for the physical arguments) and we 
shall use the principle of variable transformation 
(Wadsworth & Bryan, 1960) to obtain the PDF's  of 
xs, xa, x2~ and Xq. 

Since both #1) and x (z) have the same distribution 
as the normalized Bijvoet difference x, the PDF's of 
x(O will be given by (see PS): 

P~(x(O) = 
l (2/]/~) exp [-x(O 2] for P =  1 (12a) 

(2/7:3)m exp [-x(02/4]Ko[x(02/4] for P = 2  (12b) 
(23/z/7:)Ko[ l/2#0] for P = M C  (12c) 
2 exp I -x(0]  for P = M A  (12d) 

0<x(O <co, i = 1 , 2 .  

(i) Sum and difference variables 
From the principle of variable transformation (see 

Wadsworth & Bryan, 1960) we obtain the joint PDF 
of Xs and xa as 

½P1 [ x s + x a ]  P2 [ X s - X a ]  intheareaAl 
t --- f f ---]  t---2--1 

P(xs,xa) = of the (xs, xa) plane, 

0 elsewhere, (13) 

where Ax is the shaded area in Fig.2. Making use of 
the property that x(1) and x(z) have identical density 
functions and also denoting [xa] by xa itself for sim- 
plicity of writing we obtain from (13) that 

P(xs'xa) = { Pl (x-s-2x---~a) P2 (-xs----2xa) elsewhere, (14) 

where A' is the wedge-shaped area in the first quadrant 
of the (xs, xa) plane (cross-hatched area in Fig. 1). The 
region A~ can be defined either by 

0 < xs <_ xa, 0 <_ xs < co (15a) 
or by 

xa < xs < co, 0 < xa < co. (15b) 

From (14)-(15b) we obtain 

e(xs)  = P(xs, xa)dxa (16) 

P(xa) = xs, xa)dxs . (17) 
x 

From (12) and (14) we obtain 
P(m, xe)= 

(4/7:) exp [ - (x~ + x~)/2] for P =  1 (18a) 

(2/7: 3) exp [-(x~ 2 + x~)/8]go [ 16 J 

x K0 [(x -x 121 i6  ] for P = 2  (18b) 

(8/7:Z)Ko[(Xs + xa)/l/2]Ko[(Xs- xa)/1/2] for P =  M C  
(18e) 

4 exp ( -2xs )  for P = M A .  (18d) 
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From (16)-(18) we obtain the PDF of xs (see Appen- 
dix A) and that of xa (see Appendix B) as 

P(xs)= 
(23/2/]/z 0 exp ( -  x~/2) erf (xs/1/2) for P=  1 

t 

P(x~) 

(19a) 

(2/zc3)xs exp (-x~/8)~0 l 'exp [ -  ~ J  x~y2] 
[x~(1 + y)Z x~(1 _y)Z 

16 ] K 0 [  16 ]dy forP=2 × K0 
I. 

(19b) 

(8/zc2)XsI~ Ko[xs(1 + y)/ l/2]Ko[xs(1 - y)/ V2]dy 
i )  u 

for P = M C  (19c) 

4Xs exp (-2xs)  for P = M A  (19d) 

(23/2/]/1r) exp ( -  x2a/2) erfc (xa/1/2) for P =  1 (20a) 

(4/re 3) exp ( -x~/8) l :exp  [ (2y+xa)Z 8 ] K°(y2/4) 

x Ko [ (y + xa)2 ] • 4 dy for P = 2  (20b) 

16 Ko(l/2y)Ko[V2(y + xe)]dy for P= MC 
-~ -o  

(20c) 

[ 2 exp ( -  2xa) for P =  M A ,  (20d) 

where the values of the integrals in (19b, c) and (20b, c) 
are to be obtained by numerical or graphical methods. 

(ii) Product and quotient variables 
From the principle of variable transformation we 

obtain the joint PDF of x~o and Xq as 

X~ 

A1 

{ (2xq)-lPl(l/X~Xq)Pz(Vx~o/Xq) in the area 
P(xp, xq) = A2 of the (xp, xq) plane 

0 elsewhere, (21) 

where Az is the shaded area in Fig. 2 between the lines 
x~ = 0 and xq = 0, namely, 0 < x~o, xq < oo. The PDF's 
of x~ and Xq will therefore be given by 

S P (x~) = P (xio, xq)dxq (22) 
o 

P(xq) = I:P(xlo, xq)dx~. (23) 

From (12) and (21) we obtain 

P(x~o, Xq)= 
(2/zcxq) exp [-x~xq-(x~/xq)] for P =  1 (24a) 

1 1 + 

x Ko(x~xq/4)Ko ~ for P = 2  (24b) 

(4/rcgxq) Ko(l/-2x2oxq) Ko(]/2x~/xq) for P =  MC 
(24c) 

(2/Xq) exp [ -  x]/xpx~ - ]/x~/xq] for P =  MA . 
(24a) 

From (22)-(24) we obtain the PDF of x~ (see Appen- 
dix C) and that of xq (see Appendix D) as 

P(xp) = 
f (4/zOKo(2X~) for P =  1 (25a) 

o exp [ - ( y +  ~/16y)]Ko(y)Ko(x~/16y)dy/y 
for P =  2 (25b) 

8 f:Ko(y)Ko(2xp/y)dy/y for P =  MC (25c) 

8Ko(41/x~) for P = M A .  (25d) 

x~ / 

/ 

/ /  
/ /  
/ /  
, /  
/ /  
/ 
/ _  
x. 

Fig. 1. Diagram showing the domain in which the joint Fig.2. Diagram showing the domain in which the joint 
density function P(xs, xa) is non-zero, density function P(xp, xq) is non-zero. 
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P(xa) = 

f 2/[zc(x~ + 1)1 for P =  1 (26a) 

1 Ioe p[ x" +x q . . . .  zc3xa 4- (xa 

x Ko Ko ~ dxp for P = 2  (26b) 

4 S Ko(1/ 7 x,) I(o(1/fx;x,)&, 
o for P= MC (26c) 

(Xq -at- 1) -2 for P = M A ,  (26d) 

where the integrals in (25b, c) and (26b, c) are to be 
evaluated by a numerical or graphical method. 

1 "75 I 

1 '50 I 
1 "25 ,~ 

t,.ool\ 
P(X,) [ \  

0"75L._.< _ N/(1) 
~ ~ ( 2 ) ~  

0"25V/ 

0;0125 0[50 0t75 1"00 1125 4-501"!75 2(00 
(a) 

1 '75 

1"50 \ 

 .25V V-,(Mc) 

(b) 

Fig.3. Density function of xs [ = x ( 1 ) + x  (2)] for a pair of 
crystals: (a) for the cases P= 1 and 2; and (b) for the cases 
P=MA and MC. The symbols I and N1 refer to the iso- 
morphous and non-isomorphous pairs respectively. The 
number in parentheses near each curve refers to the number 
of atoms in the P-group. 

2.3 Expectation values of xs, xa, xp and x a 

(a) lsomorphous pair 
Let us denote the expectation value of the normal- 

ized Bijvoet difference x by (x> (see PS for the values 
of <x> in the various cases). Since 

<xs>=<x.)+x(2G 
= <x(1) > + <x(z) >= 2(x> (27) 

it is clear from PS that <xs>=2/l/zc, 2(2/zc)3/2, 21/2/rc 
and 1 for P = 1,2, MC and MA respectively. From (9) 
we obtain <x¢)= 0. From (5) and (6) we obtain 

(x~>= <X2>=/,.2 y2 sin2~,> \P'P (2 
= <Y=e ><~><sinig> 
=½ for all P ,  

where we have used the known results that (ya e ) =  
( y ~ > = l  and that ~ is uniformly distributed in 
- r e <  ~,<zc. From (11) we obtain <xa>= 1. 

(b) Non-isomorphous pair 
It is evident that the value of (xs> (for a given P)  

will be the same for the I and NI pairs. It can be easily 
shown that (xa>=0.4674, 0.511, 0.5065 and 0.5 for 
P =  1,2, MC and MA respectively (see Appendix B). 
It is clear that 

<X27 > = <X(1) . X (2)> ~--- <X (1)>. <X (2)> = <X> 2 , 

so that <xr)= 1/re, (2/703 , 2/% 2 and ¼ for P =  1,2, MC 
and MA respectively. For the quotient variable it can 
be shown that <xa>=oo (for any P)  and this follows 
from the fact that the distribution of xa corresponds 
to the distribution of the quotient of two quantities 
chosen independently from a given population obeying 
a specific distribution in the range 0 to oo. For example 
(26a) is the well-known Cauchy distribution for which 
the expectation value is known to be undefined (Mun- 
roe, 1951, p.99). 

3. Discussion of  the results 

The PDF's  of x~ obtained in {} 2 are in the normalized 
form, since the PDF's  of x (1) and x(2) used to obtain 
them were themselves in the normalized form. The 
PDF's  of xs, xa, xv and xa for the various cases, de- 
pending on the number of anomalous scatterers in the 
unit cell, are represented in Figs. 3 to 6. 

The density functions of x,, i=s, d,p, q can be used 
for testing for isomorphism of a pair of non-centro- 
symmetric crystals containing a group of replaceable 
atoms which can be excited to scatter X-rays of some 
suitable wavelengths. The best test function would be 
the one for which the distinction between Pi(xO and 
Plvz(xO is marked for a fixed value of the number (P) 
of anomalous scatterers in the unit cell. A study of 
Figs. 3 to 6 yields the following conclusions. 
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(i) The function P (xs) 
The function Pi(xs) has a singularity at the origin 

for the cases P = 2  and MC while for the cases P =  1 
and MA, it has a finite maximum at the origin. The 
value of Pi(xs) in all these cases decreases monoton- 
ically with increasing value of xs. On the other hand 
the values for P~w(xs) in all the cases start at the origin, 
increase to a maximum (which lies at x=0.88,  0.52, 
0.5, 0.25 for the cases P = 1,2, MA and MC respectively) 
and then decrease thereafter. 

(ii) The fimction P (xa) 
The function P:(xa) is a delta function at the origin 

for all cases. However, the functions PNi(xa) all start 
from a maximum value of xa. The distinction between 
the Px(xe) and Plvz(xa) curves for a given number of 
atoms in the P-group is very marked and much better 
than that displayed by the P(xs) functions. 

(iii) The function P (xv) 
Both the functions P:(x~) and Parz(xlo) in all cases 

have a singularity at the origin and decrease monoton- 
icaUy with increasing value of xp. The distinction be- 
tween the curves representing P](xp) and P6,x(x~), for 
a given number of atoms in the P-group, is much 
poorer than the distinction obtained with either of the 
functions P(xs) or P(xa). 

(iv) The function P(xq) 
The i'unction Pz(xq) for all the cases is a delta func- 

tion at xq = 1 while the values for the functions Psz(Xq) 
start with a maximum at the origin and decrease mono- 

2"501 

2"25k 
~ " -"~ = I 

2"00 

1 "75 

1.5o 

I 1"25 
Pcx~) (1) 

1"00 ~ , ~ ~  NI (MA) 
" ~ . ~ N I ( 2 )  

0"75 

O'50 

0"25 

0 I 1 I , I I I 

0 0"25 0"50 0"75 1"00 1"25 1"50 1'75 2'00 
x,, --.- 

Fig.4. Density function of xa (=lxm-x(2)l) for a pair of 
crystals. 

tonically with increasing value of xq. Thus the distinc- 
tion between the curves Pi(xq) and PNi(xq) for a given 
number of atoms in the P-groups is quite marked. 

The above study regarding the nature of the curves 
of the density functions shows that the functions P(xa) 
and P(xq) are distinctly better than the functions P(xs) 
and P(xlo) for the purpose of testing the isomorphism 
of a pair of non-centrosymmetric crystals. A study of 
the expectation values (see § 2.3) also shows that xq 
and xa are more useful than the variables x~ and xs 
for this purpose. 

There are two advantages in using the normalized 
Bijvoet difference x. First, when dealing with a series 

2'25 

2"00 

1 "75 

1 "50 

1"25 
p ( x , )  

1 '00 

o.~e 

0"50 

0'25 

0 
0 

2"00 t 

1 "75 [- 

1 "50 

f l '25 

p ( x p  
1 "00 

0"75 

0"50 

0'25 

0, 
0 

/(1) 

',,':,~ 

0'25 0"50 0"75 1"00 1"25 1-50 1"75 2"00 
x,, - . . -  

(a) 

%"-NI ( MC) 

~,_~---I(MA) 

~__~NI ( MA ) 

~ I(MC) 

,,',\\ 
,,-\\ o 

0"25 0'50 0"75 1"00 1"25 1"50 1"75 2"00 
x.- . .  

(b) 

Fig.5. Density function of x~ [=x(1).x(2)] for a pair of 
crystals (a) and (b). 
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of n isomorphous crystals we can generalize equation 
(5), thus 

x(1)(H) = x(2)(H) = . . .  = x(O(I-I) = . . .  = x(n)(H), (27) 

where H relates to the same reflexion (hkl) from each 
crystal. The independence of the values of xa and xq 
with regard to the reflexion index H the number (P) 
and contribution (a~) from the atoms in the P-group 
for a pair of isomorphous crystals is a direct conse- 
quence of the normalization. Secondly, it may be noted 
that (27) holds even when X-rays of different wave- 
lengths are used for measuring the Bijvoet differences 
in the different crystals. So, instead of trying to find 
a single wavelength capable of exciting all the anomal- 
ous scatterers in the series, we are at liberty to use a 
different wavelength for each member, chosen suitable 
for its efficiency in exciting the relevant P-atoms. 

4. Test of the theoretical results 

The theoretical results were tested by means of data 
from a pair of non-centrosymmetric isomorphous 

1 "251 
1 "00 

0"75 

"%0 
0"25 

0 
0 

~ ~ i l  ( MC) (2) 

(MA) I 

0~25 0:50 0175 1"00 1'~)5 1!50 1"75 2!00 
Xq = 

Fig. 6. Density function of xq [=xH)/x(2~] for a pair of crystals. 

crystals. The details regarding the crystals are given in 
Table 1. 

A parameter p which is a measure of the degree of 
isomorphism is the mean value of the deviations in the 
atomic coordinates and is defined by 

1 
p = - -  

1l i=1 

where n is the number of atoms in the asymmetric unit 
and (dx)~ and (Ay)~ are the deviations in the x and y 
coordinates of atom i in the crystal pair. The values 
o fp  for the various crystal pairs were calculated with 
the use of the known atomic coordinates and the mean 
values of the cell dimensions of the two crystals con- 
stituting the crystal pair. These values of p for the 
various crystal pairs are also given in Table 1. For the 
perfectly isomorphous pairs, namely cases 1 and 2 in 
Table 1, p has zero value. However, for the pairs 3, 4 
and 5 in Table 1 the values of p are practically the 
same showing thereby that they are isomorphous to 
the same degree. The value of p for pair 6 is slightly 
higher than that for the pairs 3, 4 and 5 so that the 
degree of isomorphism is slightly poor. 

In order to test the theoretical results under ideal 
conditions, the calculated Bijvoet differences for the 
hypothetical models where there is perfect isomor- 
phism, namely cases 1 and 2 in Table 1, were first used 
to obtain the 'experimental' density functions of all the 
four variables (the dots in Figs. 3-6). A comparison of 
the theoretical and experimental distribution curves 
(see Figs. 3 to 6) of the variables x~ and also a study 
of their moments given in Table 1 clearly confirms that 
the distribution of xe is a delta function at xa =0  and 
of xq is a delta function at xq = 1 ; and that the variables 
xe and xq could be used for testing the isomorphism 
(substitution type) of a pair of non-centrosymmetric 
crystals containing suitable anomalous scatterers. 

Table 1. Details of the crystal structures chosen for the verification of 
Name of the Plane 

No. crystal pair P Q group 
1. Hypothetical model 20 20 p g  

2. Hypothetical  model 2 46 pg  

3. L-Tyrosine hydrohalides, 2 26 p g  
(001) projection 

4. L-Arginine hydrohalides, 4 52 p g  
(001) projection 

5. L-Arginine hydrohalides, 4 52 p g  
(100) projection 

6. Glucosamine hydrohalides, 2 24 pg  
(100) projection 

p 

o.ooooA 

0.0000 

0.0784 

0.755 

0.0781 

0.0882 

the theory 

<x~> <x~) <xq) 
E* 0"000 0"526 1"0 
1 0'000 0"500 1"0 
N I  0.500 0.250 c~ 
E 0"000 0"616 1"0 
1 0"000 0"500 1"0 
N I  0"511 0"258 eo 
E 0"201 0"619 0"970 
! 0"000 0"500 1 "000 
N I  0"511 0"258 ~x~ 
E 0"220 0"331 2"427 
I 0"000 0"500 1 "000 
N I  0'511 0"258 c,o 
E 0"194 0"294 2"253 
I 0"000 0"500 1 "000 
N I  0"511 0-258 eo 
E 0"264 0"775 1 "640 
1 0'000 0"500 1-000 
N I  0"511 0"258 c~ 

and N I =  theoretical value for a pair of non- * E =  experimental value, I =  theoretical value for a pair of isomorphous crystals 
isomorphous crystals. 
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To test the usefulness of the probability distributions 
of xa and xq in practical cases, they were tried on actual 
crystal pairs (see Table 1 for details of these structures) 
such as the hydrohalides of L-tyrosine (Srinivasan, 
1959a, b), L-arginine* (Mazumdar, 1964) and glucos- 
amine (Chandrasekharan, 1966). The calculated Bijvoet 
differences for these crystal pairs were used to obtain 
the cumulative function N(xa) of xa (Fig.7) and the 
PDF of xq (Fig. 8). The cumulative function of xq was 
not used for these cases, since it may not yield useful 
results in such practical cases (where the pair of crys- 
tals slightly differ in their cell dimensions). This is be- 
cause the theoretical curves for the I and N I  cases 
start at xq = 0 and cross over each other at xq = 1. It is 
seen from Fig.7 that the degree of isomorphism for 
the pairs 3, 4 and 5 is practically the same as required 
by the value of p and that for pair 6 it is slightly poor. 
The PDF of xa (Fig. 8) also shows a prominent peak 
at xq= 1, showing that all the pairs are isomorphous. 
However, owing to the inherent fluctuations in the 
PDF, the PDF of xq seems to be less useful than the 
cumulative function of xa. 

It is seen from Table 1 that, of the three quantities 
(xa), (x~) and (xq), the mean value of xq offers the 
best result in practice. This is to be expected since, in 
the presence of discrepancies such as the small dif- 
ferences in the cell dimensions, the delta function for 
xq spreads on both sides of xq = 1 whereas the delta 
function for xa at xa = 0 spreads asymmetrically. 

The tests carried out with the hypothetical and actual 
crystal pairs thus show that the cumulative function 
of xa and the mean value of xq could be profitably 
used for testing the isomorphism of a pair of non- 
centrosymmetric crystals containing anomalous scat- 
terers. 

APPENDIX A 
Calculations of PlvKxs) 

From (16) and (18a) we obtain for the case P =  1 that 

2x, 110 e(xs)  = -~-5 exp (-x~/8) exp ( - ~ y 2 / 8 )  

× K0[x2(1 +y)2/16]Ko[x2(1-y)2/16]dy, (,4-3) 

which can be evaluated by a numerical method. 
From (16) and (18c) we obtain for the case P = M C ,  

that 

8xs lloKo[xs(1 P (xs) = ~ + y)/1/2]Ko[xs(1 - y)/1/2]dy , 
(,4-4) 

where we have made the substitution x a = x s y .  The 
integral in (A-4) is to be evaluated by a numerical 
method. From (16) and (18d) we obtain for the case 
P = M A  that 

P(xs )=4xs  exp ( -  2xs).  (A-5) 

1"25 

1"00 

0"75 

N(oX. ) ° 

0'25 

4 lxs 
P(xs) = ~- exp ( -  x~/2) exp ( -  x~t/2)dxa 

o 
21/2 1"25 

= - - ~  exp ( - ~ / 2 )  erf(xs/1/2).  (A-l) 

1"00 
From (16) and (18b) we obtain for the case P = 2  that 

T P(xs) = - ~  0 exp [ - ( x  2 + x~t)/8]Ko[(Xs+ xe)2/16l P(%1°"75 

x Ko[(Xs-xa)Z/16]dxa. (A-2) o.so 

It seems difficult to integrate (A-2) by an analytical 
method. To make it suitable for numerical integration, o.25 
we make the substitution xa = xsy  to obtain 

* Though  P = 4  for L-arginine hydrohalides,  we shall use 
the theoretical distributions corresponding to the case P = 2 .  
This will not  affect our  results since the PDF ' s  for the cases 
P = 2  and M A  are no t  very different (see Figs.4 and 6 and 
Table 1 for the moment s  of the variables xd.  

00 1125 1!50 1!75 2~00 

/ 

0125 0150 0175 1!00 
x, ,  ,,- 

Fig.7. Experimental  verification of the cumulat ive funct ion 
of xa. The solid line represents the theoretical curve for the 
case with P = 2 .  The experimental  points  are shown as 
follows: 

A Glucosamine hydrohalides,  (100) project ion;  
• L-Arginine hydrohalides,  (001) project ion;  
+ L-Arginine hydrohalides,  (100) project ion;  
O L-tyrosine hydrohalides,  (001) projection. 
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Fig. 8. Experimental  verification of  the density funct ion of  x~. 
The solid line represents the theoretical curve for the case 
with P = 2 .  The experimental  points  are shown as in Fig.7.  
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APPENDIX B 
Calculation of Plvx(xa) and (xa)lvz 

From (17) and (18a) we obtain for the case P =  1 that 

21/2 
P(xa) - 1/~ exp (-x~/2)erfc (xa/1/2) , (B-l) 

where 
erfc (x) = 1 - erf (x).  

From (B-I) we obtain 

21/2 1 = xa exp (-x~/2)  erfc (xa/1/2)dxa. (B-2) 

Making use of the known result that erfc (x )=  
n-1/ZF(½,x 2) and the substitution y=x~/2 in (B-2) we 
obtain 

(xa)  = 21/2 F(½,y) exp ( - y ) d y  
7~ 0 

- 1/n 2el(1d; 2.½) 
2 
2 

= ~ (1 /2-1)=0.4674 (B-3) 

where we have used equation (16) in p.309, Vol.II of 
Erdelyi (1954) and equation (10) in p.70 of Rainville 
(1960). From (17) and (18b) we obtain for case P = 2  
that 

4 l °° P(xa) = -~5-exp ( -x~/8)  o exp [-(2y+xa)2/8] 

x Ko(y2/4)Ko[(y+xa)2/4ldy, (B-4) 

where we have used the substitution x s -  xa-- 2y. Equa- 
tion (B-4) is to be evaluated by a numerical method. 
From (17) and (18c) we obtain for the case P = M C t h a t  

S 16 Ko(1/2y)Ko[1/2(y+xa)ldy, (B-5) P(xa) = ~ o 

where we have used the substitution x s - x a  = 2y. Equa- 
tion (B-5) is to be evaluated by a numerical method. 
From (17) and (18d) we obtain for the case P = M A  
that 

P(xa)=2 exp ( - 2 x a ) ,  (B-6) 
which gives 

S (xa) = 2xa exp ( -  2xa)dxa = 0.5. (B-7) 
o 

It is found graphically that (xa)=0.511 for the case 
P = 2  and (xa)=0 .506  for the case P = M C .  

APPENDIX C 
Calculation of Plvz(x~) and P_NI(Xq) 

Equation (25a) can be easily obtained from (22) and 
(24a) by making use of equation (17) in p.313, Vol.I 
of Erdelyi (1954). Equation (25b) can be obtained from 
(22) and (24b) by using the substitution xa =4y /x ,  in 
the integral. Equation (25c) can be obtained from (22) 

and (24c) by using the substitution xa=y2/2x~ in the 
integral. Equation (25d) can be obtained from (22) and 
(24d) by making use of equation (17) in p.313, Vol.I 
of Erdelyi (1954). 

From (23) and (24a) equation (26a) follows directly. 
From (23) and (24b) equation (26b) follows, provided 
we make use of the substitution x~ = 4xay in the inte- 
gral. From (23) and (24c) equation (26c) follows, pro- 
vided we make use of the substitution x,=y2/2xa in 
the integral. From (23) and (24d) we can obtain equa- 
tion (26d) by making use of equation (15) on p. 313, 
Vol.I of Erdelyi (1954). 

The author wishes to express his thanks to Professor 
G.N.  Ramachandran for the valuable discussions he 
had with him. His thanks are also due to Professor 
R.Srinivasan and Dr  K.Venkatesan for their com- 
ments. He is grateful to the referee for his useful com- 
ments. 
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